skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kaupin, M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Context.Quasar outflows play a significant role in the active galactic nucleus (AGN) feedback, impacting the interstellar medium and potentially influencing galaxy evolution. Characterizing these outflows is essential for understanding AGN-driven processes. Aims.We aim to analyze the physical properties of the mini-broad absorption line outflow in quasar J1402+2330 using data from the Dark Energy Spectroscopic Instrument (DESI) survey. We seek to measure the outflow’s location, energetics, and potential impact on AGN feedback processes. Methods.In the spectrum of J1402+2330, we identify multiple ionic absorption lines, including ground and excited states. We measure the ionic column densities and then use photoionization models to determine the total hydrogen column density and ionization parameter of the outflow. We utilized the population ratio of the excited state to the ground state of N IIIand S IVto determine the electron number density. Results.The derived electron number density, combined with the ionization parameter, indicates an outflow distance of approximately 2.2 kpc from the central source. Having a mass outflow rate of more than one thousand solar masses per year and a kinetic energy output exceeding 5% of the Eddington luminosity, this outflow can significantly contribute to AGN feedback. Conclusions.Our findings suggest the absorption outflow in J1402+2330 plays a potentially significant role in AGN feedback processes. This study highlights the value of DESI data in exploring AGN feedback mechanisms. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026